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The steady symmetric cavitational flow past a plate In a stream of ideal 

liquid has been investigated by Gurevich [ 2 I, following Efros [ 1 1. 
Apparently, this flow can be considered as a cavitational flow about a 

grid of plates of fineness l/L. 

1. Bommdary value problem. We consider a plate, set normally to a 

current of ideal liquid, which is bounded by parallel walls (Pig. 1). Ve 

assume that the plate suddenly attains a forward velocity v1 Into the 

stream (frontal impact). The resulting Impulsive flow has a velocity 

potential 4, connected with the impulsive pressure p and liquid density 

p by the relation 

P= -P?? (1.1) 

The complex potential of the impulsive flow is s = 4 + i+. The har- 

monic functions &r, y), t&z, y). defined in the plane of flow t, must 

satisfy the following boundary conditions: 

1. On a free surface, p = 0 and therefore 4 = 0. 

2. The normal velocity on the plate 6 $/a n = v1 is known. 

3. The x axis and walls are streamlines $ = const. 

Doreover, physical considerations reQuire that the complex-conjugate 

velocity da/d2 approaches a definite value at infinitely distant points 

in the streaa, tends to infinity at the edges of the plate and approaches 

zero on the streamline D. 

The flow region between the wall and the z axis Is mapFed by conformal 

transformation into the upper right quadrant (Fig. 2) of the plane of the 

transformed variable u = c + ir). Corresponding points in Fig. 1 and 2 are 

denoted by the same letters. The transformation Is defined, following 
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Ref. I2 1, bs 

ni A- (u f ey J 1 f u 

xi = vou (u” - - Q2) (U” - fp) 1-U 
(1.2) 

where N is a physics1 constant. u. the velocity megnitude corresponding 
to steady cavitational flOU with 8 free surface, and c is a parameter, 
which may be expressed in terms of the basic parameters a, h by the rela- 
tion 

ah (fC_._ vi; 1-U l-h 

@ = hl(r_I_-_-i/z- 
CC= / 1+R’ 

X’ - 1/ 4+h 
(4 *3) 

Fig. 1. Fig. 2. 

The boundary conditions satisfied by the function dr/du in the a plane 
are 

0 when 5=0, O<ri<w 
Im2!& rltd=idal when q=O, 1<5<m (1.4) 

0 when q=O, O<E;<l 

The first of conditions (1.4) enables us to continue do/da by symmetry 
into the second quadrant of the upper half u-plane. The analytic function 
dr/du in the upper half-plane then satisfies the boundary conditions 

.- 

I vlldz/duI when ?=O, i<E<w 
fm dw A_. 

du - 
i 

--l)dz/duj when q=O, -a<E<---1 
0 wben ?=O, -1 <E<l 

and is determined by Schwartz’s integral, 

Integrating, we obtain 

dw 2~1 1 N 1 --= 
du xv0 (la2 - Q2) (I(‘? _ /Cl) C [(u’ - a*) K1 + (u? - 1~2) h?: - 

(1.5) 

U.6) 

(1.7) 
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i 
K1= 2 (e + h)B - 2 

es + h* (I + 2e) 
xh (u’ - ha) 2 i+h 

arc tgx 1 i KS = a4tha__ol) ;(e+a)s-2es+~~t2e) arctg.1 

(1.8) 

This expression for dw/de satisfies all boundary conditions, and the 
physical conditions to be fulfilled by dm/dr. 

1. Determlmation of the lsmlsire force. Let I, be the total impulsive 
force exerted br the liquid on the plate. Then from Fig. 1 and equation 
(1.1) we have 

J, = - 2i 
s 

pdz = 2ip 
s 

‘P da 
BC BC 

Integrating by parts in the transformed plane, and noting that 4- 0 
at the ends of a plate, we obtain 

co 

J I = - 2ip a3 dq 
s 

z xdu=-2ip 
s 

dw 
z(u) Re du du 

1 1 

(2.1) 

where Re(dm/de) 1s to be determined by (1.8). The value of L(U) is to be 
determined. 

Since the point8 B in the z and 
(1.2) gives 

I (u) = - i z A arc tg t + 

u planes correspond, Integration of 

B 
$ arc tgxt + B_x arc tg 

+ c+ 7 arc tg at + C-a arc tg i - q (A + B-X + C-a) ] 

J- u+i 2es t= -, 
U- 1 

A= -, 
asha 

B,=- _-i_.-. 
a4-hY 

Since the points C in the z: and II planes correspond 

N=$[; A+(B_X-%)arctgX+(C_a-%) arctg a]-lnol=Nov,l (2.3) 

where No = N/v01 is a dimensionless coefficient. FinallY, as in Ref.[2 1, 
the fineness of the grid l/L and the cavitation number x are determined 
from the equations 
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1 aua(Q'- ha) 

L -= x(4+e,Wo ’ 
2, = 2a (a4 + es + 2e) 

11 --)(a -e)* (W 

If the variable a = see 8 is substituted into (2.11. (1.81 and (2.21, 
the impulsive force Jx is given in a form convenient for numerical iate- 
gratioa. The dimensionless coefficient go = J,/‘pol 2’ for one plate of the 
grid was calculated for differeat values of the parameters a, h. Further, 
graphs for t/L and x were drawn with use of formulas (2.4) and (2.31. 

Fig. 3 shows the relation between JL’ and A for different values of 

1 /L. Curve 1 corresponds to a plate grid with an infinite cavitational 
zone, curve 2 to cavitational flow past a plate in aa infinite stream. 
It Is evident that go increases with increase in A when 1/L is constant. 
The influence of l/L oa go becomes more significant as 1/L increases. Two 
important special cases are discussed here. 

I I I I I Al 
0 Z 4 6 8 I6 lf? 14 

Fig. 3. Fig. 4. 

3. Immlaive flow parrt a rrid of plntts with stuarmtfoa. When h + 0 
and c + 0 the base of the streamline D disappears to infinity. and we 
have flow past a plate grid with a separated stream. After introducing 
these,limits into (1.31. (1.81, (2.21, (2.31 and (2.41, the values of p” 
were computed for different values of tbe independeat parameter a (0 < 
a< 1). The graphs of l/L (Fig. 4) and A were then drawn (curve 1 in 
Fig. 31. A graph of the dimensionless coefficient c ’ for the plate grid 
in continuous flow is shown in Fig. 4 for comparisoi? it was computed 
from a formula in Ref. f3 1: 

a- 2 L2 x 1 
L*uu 

h/V -- --.=-- - lucos2L pP ( > x 1 

Fig. 4 shows that large increases in p” and p ’ occur only when tft 
> 0.7. It is interesting to note that fi O/p0 P I’ for any value of l/L. 
This may be explained bs the fact that tie disturbance of the 1iQuid is 
caused mostly br the front part of a plate when flow about it separates. 
while both parts of the plate are involved during continuous flow. 
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when the grid mesh Is wide (a + 01, 

1 w+4 
--‘= --z? L 

If, for small values of a, we expand L(U) in powers of a up to terms 
of order a4 and expand Re(dw/du) up to terms of order w3 we obtain the 
following formula for go. which is accurate up to (0~1: 

‘/an 

&’ 
1 

=. Ic (Yc + 4)’ s 
[A~& + aa (4A& + + AlA* + 4A&)] d0 = 0.4224 + O.f@Wa’ 

0 
26 

Al - 26 + Gin 6 + sin 28, A2 = (27r + 4) sin 6 + 4 cos2 6 In ctg “--;i- 

- &+a 
&= l2 -sine + (G +i)sinecos%+ c0s4elnctgq 

3 
Bl=ge+ 

5fc0s2e 
6 sin6 + 

4+c0s2e 
16 sin 20 (3.1) 

This formula is valid for 0 < Z/L < 0.001. When a + 0 streamlined flow 
past a plate in an unlimited stream is obtained. for which (3.1) gives 
the value cc0 = 0.4224, previously found in Ref. [ 4 1 . 

4. Impolsfve cavita:loaal flow past a plate in an molimited stream. 
When h + o the walls bounding the cavltational flow recede to infinity. 
In this case, from (1.3) and the Inequality 0 < c < 1 we find that the 
limits of variation of the independent parameter 0 are 0 < a < l/2( d/3 -11. 
In the limiting case when h + o in the basic formulas, values of p” were 
computed for different values of O. The graph of h was then drawn (curve 
2 in Fig. 3). It is evident that the value of no increases very little 
when x > 8. Note that for a very short cavitation zone x -, 0~ and go must 
approach 1/4n, the value of the coefficient determined in Ref. [3 1 for 
continuous flow past a plate. For fully developed cavitational flow 
(o+ 0, x+ 01, proceeding as in Section e, we’ obtain the approximate 
formula 

11’ -. 0.4224 - 0.03% a2 

which is valid when 0 < x < 0.1. When o + 0 the value cc0 = 0.4224 given 
in Ref. 14 I is obtained for flow past a plate with separation. 
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